
factor, and filler fraction to the corresponding quantities of

the composite.

Although most models do not directly consider mag-

netic field perturbation in the neighbourhood of particles

caused by their demagnetizing field, a significant fraction of

particles is influenced by their neighbours’ demagnetizing

fields (even in low density SMCs).38–41 Hence, the micro-

structure complicates modelling and greatly affects

properties like magnetic susceptibility and ferromagnetic

resonance frequency.

The objective of the current work is to determine the

influence of the irregular microstructure of an SMC on the

demagnetizing field represented by the demagnetizing factor.

We use X-ray micro-computed tomography (lCT)42 to

determine the material’s three-dimensional structure. A GE
nanotom-m43 high resolution lCT system capable of voxel

sizes of 1 lm3 and less is used. Subsequently, a 3D unstruc-

tured tetrahedral grid is generated using the measured geom-

etry and a tetrahedral mesh generator based on space

indicator functions developed by Friess et al.44 Extensive nu-

merical simulations of the magnetostatic behavior are carried

out using Whitney elements45 as implemented in the open

source finite element method (FEM) software ELMER.46

The numerical simulation provides detailed 3D electromag-

netic field information within and outside the SMC, which is

solely based on geometry data and magnetic permeabilities

of individual phases. Hence, the demagnetizing factor can be

investigated independent of non-geometric phenomena, and

experimental uncertainties. The combination of lCT and nu-

merical simulation is referred to as tomography based nu-

merical simulation (TBNS). It has been applied to radiative

transfer,47 conductive heat transfer,48 and fluid flow49 in a

range of different materials. To the best of our knowledge,

this is the first time that TBNS is applied to magnetic phe-

nomena. We used two sample sets, which were experimen-

tally investigated by Anhalt et al.50 For reference, a few

numerical studies on randomly generated data are done and

compared with the results of the sample sets and the already

published numerical work of Mattei and Le Floc’h.25

II. THEORY

A. Vector component volume average

Consider an SMC occupying the region V which can be

decomposed into the two disjoint regions Vm and Vd such

that V ¼ Vm [ Vd and Vm \ Vd ¼ ;. The subscripts m and d
refer to the magnetic and dielectric (nonmagnetic) material

phase, respectively. The volume average of the kth vector

component of the vector field v : V 7!R3 on the region Vm

is defined by

vkð Þm :¼
Ð
Vm

vkdV

jVmj
: (1)

According to the used standard basis fex; ey; ezg subscript k
can either be x, y, or z and will be reserved for that purpose

further on. jVmj denotes the volume of the region Vm. This

definition will help to describe the demagnetizing factor in a

concise fashion.

B. Demagnetizing factor

In a complete magnetic circuit and under the assumption

of linear material response, the magnetic flux density B is

related to an exciting magnetic field H0 via the relative per-

meability lr

B ¼ l0ðH0 þMÞ ¼ l0lrH0: (2)

Thus, for linearly responding material the magnetization M

of the ferromagnetic material is related to the magnetic field

strength H, which is magnetizing the material, by the linear

law

M ¼ vH ¼ ðlr � 1Þ �H; (3)

where v denotes the magnetic susceptibility. In non-

complete magnetic circuits, the demagnetizing field HD

reduces the magnetic field inside the ferromagnetic material

and Eq. (2) becomes

B ¼ l0ðH0 þMþHDÞ: (4)

Due to the microgeometry of SMCs non-complete circuits

have to be considered, even for toroidal cores.

Let us now consider an SMC of regular shape, e.g., an

ellipsoid or a cylinder, completely immersed in a uniform

magnetic field H0 applied along one of the principle direc-

tions ek. The orientation in space of the SMC is assumed to

be well defined and fixed. Using the notation introduced in

Subsection II A, the total magnetometric demagnetizing fac-
tor Ntot

k along direction ek is defined34 by

ðHD;k Þm ¼ �Ntot
k � ðMkÞm: (5)

Note that in the case of bulk ellipsoids Ntot
k is consistent with

the well known demagnetizing factors for ellipsoids but it

also covers non-uniform demagnetizing fields, e.g., in cylin-

ders. The term magnetometric is deduced from magnetome-

ter measurements and will be dropped hereafter. By taking

the vector component volume average Eq. (4) transforms to

ðBk Þm ¼ l0½ðH0;kÞm þ ð1� Ntot
k Þ � ðMkÞm�: (6)

In analogy to Eq. (2), an intrinsic permeability lk;m of the

magnetic phase of the SMC is defined by

ðBk Þm ¼ l0lk;mðH0;k Þm: (7)

This can be understood as the magnetic permeability cor-

rected by the intrinsic demagnetization. Since in non-

complete circuits the magnetic field acting on the material is

H ¼ H0 þHD volume averaging and Eq. (3) leads to the self

consistent law

ðMkÞm ¼ ðlr � 1Þ � ½ðH0;k Þm � Ntot
k � ðMkÞm�: (8)

Combining Eqs. (6), (7), and (8) the total demagnetizing fac-

tor Ntot
k (abbreviated with total DMF) of the magnetic mate-

rial phase becomes
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increases with increasing permeability of the magnetic mate-

rial. Furthermore, for non-ellipsoidal single particles the

DMF itself depends on the magnetic permeability and is no

longer a factor of shape alone. For instance, the DMF of cyl-

inders with an axis aligned in the field direction decreases

with increasing permeability in the whole range of axis to di-

ameter ratios c, and is more pronounced for large c.34

In geometries created by distributions of hard or penetra-

ble spheres or spheroids rigorous upper and lower bounds

were reported to be a valuable tool to determine the effective

permittivity30 or the effective conductivity55,60 of the hetero-

structure. Although, due to the aforementionend mathematical

analogy, these bounds should also be applicable to the mag-

netic permeability no such bounds are known for the DMF.

B. Fe sample series

The DMF of Fe samples is simulated in type CI configu-

rations following a TBNS process. Since, as already men-

tioned above, in this configuration N̂geo ¼ 0 the DMF

depends on the SMC’s microstructure only and N̂tot ¼ N̂
inn

.

In order to emphasize that equivalence the latter term N̂inn

will be used hereafter. Samples with nominal filler fraction

x 2 f0:1; 0:2;…; 0:8g are inscribed into the configuration in

three different orientations such that one of the three axes

e1; e2; e3 of the sample’s local coordinate system is aligned

to the z-axis (cf. Fig. 3). Subscript d 2 f1; 2; 3g in N̂inn
d

denotes one of these orientations. The results of simulations

using the relative magnetic permeability lr ¼ 1000 of the

bulk are shown in Fig. 9. Since the orientation used in the

simulations cannot be related to the orientation used in the

experiments the DMFs are sorted such that the largest DMF

corresponds to direction e1, while the smallest DMF relates

to direction e3. This ordering will be used throughout this pa-

per. Note that the actual filler fractions of the SMC cutouts

differ from the nominal ones because of the inhomogeneity

of the magnetic loading in the samples used. For every mesh,

the minimal edge length dmin corresponds to 5 lm in physical

space and the SMC subset simulated has dimensions

; 0:7 mm� 1:4 mm. With a mean particle diameter dFe ¼
88 lm of the iron-powder the relative numerical error is esti-

mated to be less than 5% (cf. Fig. 5).

Two issues stand out: (1) The inner DMFs obtained

from the simulations strongly deviate from experimental

results and (2) the DMFs show a strong anisotropy at

x 2 f0:1; 0:2g. The directional 2-point probability functions

equally exhibit the observed anisotropy (cf. Fig. 10).

For constant filler fractions larger gradients of Ŝ2 at

r¼ 0 correspond to smaller DMFs. This is also illustrated in

Fig. 11 which relates the inner DMFs to the directional spe-

cific surface area ŝv corresponding to the slope of Ŝ2 at the

origin. The data points for different orientations and constant

filler fractions x¼ 0.1 and x¼ 0.2 lie approximately on

straight lines, whose slopes decrease with increasing filler

fractions. For larger filler fractions, this relation cannot be

observed and is probably concealed by long range percola-

tion. No simple relation between N̂inn and ŝv for varying

filler fractions can be found, which is expected since the 2-

point probability function contains no information about per-

colating clusters.

Utilizing the previously generated meshes the Fe sam-

ples are further studied with particle permeabilities

lr 2 f10; 20; 50; 100g. To account for anisotropy mean val-

ues hN̂inni ¼ ðN̂inn
1 þ N̂inn

2 þ N̂inn
3 Þ=3 of the inner DMFs are

computed. Figure 12 shows that the experimentally deter-

mined DMFs are approached for lower permeabilities. The

dependence of the DMF from particle’s permeability,

FIG. 8. Comparison of inner DMFs of randomly packed spheres (N̂tot
S ) and

oriented prolate spheroids (N̂tot
S;2:1) with a major to minor aspect ratio of 2 : 1.

The DMFs are computed for two different values of magnetic permeability

lr and various filler fractions x. Results are obtained from simulations of

type CI configurations.

FIG. 9. Inner DMF N̂inn of Fe sample series for eight filler fractions and

three orthogonal orientations indicated by subindices 1, 2, and 3 obtained

from type CI configurations based on tomography data. Magnetic permeabil-

ity of particles is set to lr ¼ 1000. For comparison the experimentally deter-

mined corresponding inner DMFs Ninn
exp : are shown.50 The fit function

x 7! expð�3 xÞ=3 to the experimental data (dashed line) was determined by

Anhalt et al.50

FIG. 10. Directional 2-point probability functions Ŝ
ð10Þ
2 and Ŝ

ð20Þ
2 for Fe sam-

ples and filler fractions x¼ 0.1 and x¼ 0.2, respectively. They are computed

along three orthogonal sample orientations ej in steps of 1 lm. The super-

scripts (10) and (20) relate to the considered filler fractions in percent.
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already described in Subsection IV A (Fig. 8), can once again

clearly be seen in Fig. 12. This behavior was previously

described by Mattei.25 Note that the standard deviation of

the DMFs (error bars in Fig. 12) increases with decreasing

particle permeability lr which indicates that the microstruc-

tural influence also depends on the particle permeability.

Additionally, apparent permeabilities lapp;j are deter-

mined from this simulation series for each filler fraction and

sample orientation ej. In Fig. 13, the mean value hlappi
¼ ðlapp;1 þ lapp;2 þ lapp;3Þ=3 of the apparent permeability is

compared to the experimentally measured permeability. The

exciting magnetic field strength used is jH0j ¼ 10 000 A=m.

In the work of Anhalt and Weidenfeller,11 the experimen-

tally measured permeabilities were compared with mathemati-

cal models by Rayleigh, Bruggeman, McLachlan, and others.

Only Bruggeman’s model described the measured values in

the range of 0 � x � 0:6 without making use of fit parameters.

Magnetic permeabilities for x> 0.6 could only be described by

models which were fitted to the experimental data.

For filler fractions x � 0:5, the simulated apparent per-

meabilities assuming a particle permeability lr ¼ 50 are in

good agreement with experimental results while they are sig-

nificantly lower for x> 0.5. For a filler fraction of x¼ 0.6,

the experimental results coincide with a simulated particle

permeability of lr � 100, and for a filler fraction of x¼ 0.8

experimental and simulated data are in agreement, when a

permeability of lr ¼ 1000 is assumed.

Such an extraordinary increase in the permeability was

already described by Mattei64 for filler fractions exceeding

x¼ 0.6. Mattei explained this behavior by the agglomeration

of particles to several clusters like grains in a bulk material

with grain boundaries between these clusters. The generation

of such grain like structures leads to cooperative phenomena

in domain wall distribution and movement. Because the

model used does not include such phenomena a deviation

between calculated and experimental values appears.

Mattei’s hypothesis may be tested by introducing a particle

permeability which depends on the particle size or its neigh-

borhood. Once the magnetic permeability is determined as a

function of location the numerical simulation is carried out

with the same solver as used in this work. A good model for

the particle permeability as a function of particle size is cru-

cial for this procedure. Note that the results from simulations

using a particle permeability of lr ¼ 1000 are farthest away

from the experimental results for both, the DMFs and the

effective permeabilities, while they are in rather good agree-

ment for smaller particle permeabilities. This corresponds to

an experimental study with FeSi composites by Anhalt

et al.50 in which a particle permeability of lr � 4 was meas-

ured although the corresponding bulk permeability is

lr � 500.

As mentioned before it is assumed that rigorous lower

and upper bounds constructed of functionals of n-point prob-

ability functions S2ðrnÞ describe the magnetic permeability

below and above the percolation threshold.55,60 The evalua-

tion of these bounds for 3D real geometries is extremely

costly since the computation of the functionals involves inte-

grals of SnðrnÞ over the entire domain. Instead, the well

known but less accurate lower and upper bounds according

to the self-consistent model of Hashin and Shtrikman65 are

plotted for an assumed particle permeability of lr ¼ 1000

and lr ¼ 50 in Fig. 13. In the case of lr ¼ 1000, both the

FIG. 11. Inner DMFs N̂inn
j of Fe samples related to the directional specific sur-

face area ŝv along three orthogonal sample orientations ej. The DMFs are

obtained from type CI configurations with a particle permeability of

lr ¼ 1000.

FIG. 12. Mean inner DMFs hN̂inni of the DMFs of the Fe sample series for

three orthogonal directions computed for particle permeabilities

lr 2 f10; 20; 50; 100; 1000g. Error bars represent the standard deviation of

the DMFs of different orientations. The experimentally determined DMFs

Ninn
exp : are shown for reference and taken from Ref. 50. The fit function

x 7! expð�3 xÞ=3 to the experimental data (dashed line) is taken from

Anhalt et al.50

FIG. 13. Mean apparent permeability hlappi of Fe sample series computed

with particle permeabilities lr 2 f10; 20; 50; 100; 1000g for eight filler frac-

tions. The experimentally determined apparent permeabilities l exp :app of

the samples are shown for reference purposes and taken from the work of

Anhalt.11 The Hashin and Shtrikman lower and upper bounds are plotted for

particle permeability lr ¼ 1000 (thin solid line) and lr ¼ 50 (thin dashed

line) using a polymer permeability of lpoly ¼ 1. The mean of the intrinsic

permeability defined in Eq. (7) is plotted for a particle permeability lr ¼ 100

(dotted line) and extracted from the mean DMF hN̂inni using Eq. (9). It natu-

rally provides an upper bound for the corresponding apparent permeability.
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experimental and the simulated data are bounded; whereas

for decreasing lr the lower bound is trespassed more and

more while the upper bound stays in good order. For lr ¼ 10

almost all simulated datapoints are below the lower bound of

Hashin and Shtrikman (not illustrated). Note that in the con-

figurations considered a natural upper bound to the apparent

permeability is given by the intrinsic permeability defined in

Eq. (7). Once the DMF is known the intrinsic permeability is

determined by Eq. (9).

C. Finemet sample series

Analogously to Subsection IV B, the inner DMFs N̂inn of

the Finemet sample series consisting of four samples with

nominal filler fractions x 2 f0:1; 0:3; 0:4; 0:5g are computed

for three orthogonal sample orientations following a TBNS

process. Since the mean diameter dFinemet ¼ 35 lm of the

Finemet-powder used is less than half the diameter of the

iron powder dmin is set to correspond to 2:5 lm to keep the

estimated numerical error less than 5%. The SMC subset

used has a diameter of 0:35 mm and a length of 0:7 mm.

Simulations using the bulk permeability lr ¼ 105 of

Finemet lead to linear systems which were not solvable with

the iterative solvers available. This might be caused by the

extreme jump of the relative permeability at magnetic-

nonmagnetic interfaces. In first approximation, the particle

permeability is reduced to smaller values. The results of the

simulation study computed with particle permeability lr ¼
1000 are shown in Fig. 14. The observations regarding the

inner DMFs are analogous to that in Subsection IV B.

As before directional 2-point probability functions are

computed for the Finemet samples. They are depicted in Fig.

15. The observations from Subsection IV B recur: the DMFs

obtained from simulations for constant filler fractions are

largest for steepest and smallest for flattest Ŝ2 curves at

r¼ 0. Again, no simple relation of DMFs and ŝv for different

filler fractions can be found, see Fig. 16. The previously gen-

erated meshes are additionally used for a set of simulations

with smaller particle permeabilities lr 2 f10; 20; 50; 100g.
The mean value hN̂inni of the three DMFs of orthogonal

directions are computed for each filler fraction, see Fig. 17.

Good agreement between experiment and simulation is

observed for a relative permeability lr ¼ 50, which is signif-

icantly smaller than the bulk permeability lr ¼ 105 of

Finemet.

It is remarkable, that—despite of the differences in per-

meability values of Fe and Finemet—the experimental and

calculated results for filler fractions x � 0:5 are in good

agreement for an assumed particle permeability of lr ¼ 50.

Nevertheless, this finding corresponds to previous permeabil-

ity measurements of various SMCs, which all show nearly

the same permeability for filler fractions x � 0:5 despite of

the magnetic material used.63

FIG. 14. Inner DMFs N̂inn of Finemet sample series for four filler fractions

and three orthogonal sample orientations indicated by subindices 1, 2, and 3

obtained from type CII configurations based on tomography data. Particle

permeability is set to lr ¼ 1000. The experimentally determined corre-

sponding DMFs50 Ninn
exp : are depicted for reference. The fit function

x 7! 0:19 expð�3:3 xÞ þ 0:005 to the experimental data (dashed line) was

determined by Anhalt et al.50

FIG. 15. Directional 2-point probability functions Ŝ
ð10Þ
2 and Ŝ

ð30Þ
2 for Finemet

samples and filler fractions x¼ 0.1 and x¼ 0.3, respectively. They are com-

puted along three orthogonal sample orientations ej in steps of 1 lm. The

superscripts (10) and (30) relate to the considered filler fractions in percent.

FIG. 16. Inner DMFs N̂inn
j of Finemet samples related to the directional spe-

cific surface area ŝv along three orthogonal sample orientations ej. The

DMFs are obtained from type CII configurations with an assumed particle

permeability of lr ¼ 1000.

FIG. 17. Mean inner DMFs hN̂inni of the DMFs of Finemet sample series for

three orthogonal directions. They are computed for four filler fractions and

for particle permeabilities lr 2 f10; 20; 50; 100; 1000g. Error bars represent

the standard deviation of the DMFs of different orientations. Experimentally

determined DMFs Ninn
exp : (Ref. 50) of the identical samples are shown for ref-

erence. The fit function x 7! 0:19 expð�3:3 xÞ þ 0:005 to the experimental

data (dashed line) was determined by Anhalt et al.50
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V. DISCUSSION

In this work, the influence of the microstructure of soft

magnetic composites (SMCs) on the demagnetizing factor

(DMF) was studied using tomography based numerical simu-

lation (TBNS). TBNS provides very detailed magnetic field

information. Simulations show that microgeometry strongly

affects the DMFs. This can be observed in the significant

variance of the DMFs for small filler fractions. The variance

is larger for small particle permeabilities lr and smaller for

large particle permeabilities. It vanishes above a percolation

limit which itself depends on the particle permeability. For

lr ¼ 1000, the percolation limit occurs at a filler fraction

xP � 0:35. The percolation limit for lr < 1000 can be found

at larger filler fractions. Above the percolation limit, the

microgeometry of the SMC no longer affects the DMF of the

SMC. Generally agglomeration and clustering seem to gov-

ern the DMF of SMCs in the complete range x 2 ½0; 1�. With

increasing filler fraction particles come close enough to

interact. Following the pole avoidance principle they com-

bine to larger magnetic particles resulting in a lower DMF.

At the same time, the formation of such clusters reduces the

influence of the microgeometry. Eventually, the percolation

threshold is reached, above which the SMCs’ DMF is gov-

erned by its macroscopic shape alone and approaches the lin-

ear law N̂totðxÞ ¼ Ngeo � x.

The DMF and the derivative of a 2-point probability

function at its origin are linearly related for different orienta-

tions and for fixed small filler fractions. However, there does

not seem to be any simple relation accounting for different

filler fractions.

Based on the results of this TBNS study and their exper-

imental counterparts,50 we conjecture that the particle per-

meability of SMCs is orders of magnitude smaller than their

bulk permeability which is in accordance with a former study

of Le Floc’h et al.22 who attributed this to a reduced domain

wall mobility due to a strong adherence of domain walls to

particle edges. The low number of moveable domain walls in

SMCs was later shown by Anhalt.4

However, uncertainties regarding the comparison

between TBNS and the experiment arise both from (1) the

experimental and (2) the TBNS side. On the experimental

side, it is difficult to isolate single quantities such as the

DMF from indirect measurements. On the TBNS side, the

reliability of results is limited by the underlying model

assumptions (e.g., linear material response). In addition, the

geometric resolution of lCT scans is limited and computer

memory restricts the size of the domain that can be

simulated.

The relative errors in the numerical procedure used are

estimated to be less than 5%. DMFs obtained from computer

generated artificial SMCs are in good agreement with the

work of Mattei and Le Floc’h25 who used random sphere

packings on a grid.

This work demonstrates that TBNS is applicable to mag-

netostatic phenomena and provides a tool to investigate mag-

netic properties. The simulation results obtained in this study

confirm the massive influence of microstructure, agglomera-

tion, and percolation on the magnetic properties of SMCs

and heterogeneous magnetic materials. The 4.5 TB of elec-

tromagnetic field data produced provides a rich source for

further research and can be obtained from the authors at any

time.
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