Supporting Information to

Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”

Authors
Hartawan Laksmono, Trevor A. McQueen, Jonas A. Sellberg, N. Duane Loh, Congcong Huang, Daniel Schlesinger, Raymond G. Sierra, Christina Y. Hampton, Dennis Nordlund, Martin Beye, Andrew V. Martin, Anton Barty, M. Marvin Seibert, Marc Messerschmidt, Garth J. Williams, Sébastien Boutet, Katrin Amann-Winkel, Thomas Loerting, Lars G. M. Pettersson, Michael J. Bogan, and Anders Nilsson

Classical nucleation theory (CNT).
According to CNT, the homogeneous ice nucleation rate at which critical nuclei appear within a supercooled liquid can be expressed by

\[J = J_0 \exp \left(-\frac{\Delta F^*}{kT} \right), \]

where \(J_0 \) is the temperature-dependent pre-exponential factor, and \(\Delta F^* \) is the Gibbs free energy barrier to form a critical nucleus from the liquid. Assuming that the molecular jump across the solid-liquid interface can be modeled based on viscous flow in the liquid, we follow Chusak and Bartell and represent the pre-exponential factor by

\[J_0 = 16 \left(\frac{3\pi}{4} \right)^{1/3} \left(\frac{\sigma_{sl}}{kT} \right)^{1/2} \frac{D}{(v_{ms})^{4/3}}, \]

where \(\sigma_{sl} \) is the solid-liquid water interfacial free energy, \(k \) is the Boltzmann constant, \(D \) is the liquid water diffusivity, and \(v_{ms} \) is the ice molecular volume. The liquid diffusivity can be represented by

\[D = D_0 \exp \left(-\frac{E_D}{kT} \right), \]

where \(D_0 \) is the pre-exponential factor, and \(E_D \) is the activation energy for diffusion in the liquid. We assume \(E_D \) is temperature dependent. In the CNT formalism, \(E_D \) also represents the activation energy (\(\Delta f^* \)) for water molecules to jump across the solid-liquid interface. Thus, there are two barriers to ice nucleation where \(\Delta F^* \) describes the thermodynamic barrier while \(\Delta f^* \) represents the kinetic barrier. Also within CNT, the thermodynamic barrier is given by

\[\Delta F^* = \frac{16\pi \sigma_{sl}^3 v_{ms}}{3(\Delta \mu_{sl})^2}, \]

where \(\Delta \mu_{sl} \) is the difference in chemical potential between the solid and liquid phases evaluated at the pressure and temperature of the liquid phase. Thus \(\Delta \mu_{sl} \) can be evaluated from

\[\Delta \mu_{sl} = \Delta \mu_{sl,0} + \Delta \mu_{sl,p}, \]

where \(\Delta \mu_{sl,0} \) is calculated at a reference pressure and \(\Delta \mu_{sl,p} \) accounts for the chemical potential difference at the reference pressure and the liquid pressure. We calculated \(\Delta \mu_{sl,0} \) by using \(\Delta \mu_{sl,0} = -kT \ln(p_{e,l}/p_{e,s}) \) where \(p_{e,l} \) and \(p_{e,s} \) are the equilibrium vapor pressures of the liquid and crystalline solid phases, respectively. The \(\Delta \mu_{sl,p} \) can be approximated by

\[\Delta \mu_{sl,p} = \frac{(p_l - p_{e,s})v_{ms} - (p_l - p_{e,l})v_{ml}(p_{e,l}) + v_{ml}(p_{e,l})}{2}, \]
where \(\nu_{ml}(p_l) \) and \(\nu_{ml}(p_{e,l}) \) are the molecular volumes of liquid water at pressure \(p_l \) and \(p_{e,l} \), respectively. However, the \(\Delta \mu_{s1p} \) is negligible relative to the \(\Delta \mu_{s10} \) for droplets larger than roughly one \(\mu \)m in diameter because the internal pressure due to the Young-Laplace effect is relatively small. Finally, we assume ice to nucleate as cubic ice following the results of several authors.\(^7,10,11\)

Crystallization time may represent nucleation and growth at lowest temperature of \(~227\) K

With an estimated critical ice nucleus diameter of \(~2.5\) nm and a growth rate of \(~1 \times 10^8\) nm/s at \(~232\) K (the growth rate lower limit in our analysis assuming the observed growth rate of \(~3 \times 10^8\) nm/s at \(238\) K\(^12\) scales with the decrease in diffusivity as temperature decreases), it takes \(~2\) \(\mu\)s for the ice nucleus to grow to a distinguishable size and \(~435\) \(\mu\)s to completely freeze the 12 \(\mu\)m droplet. Both are much faster than \(~8,500\) \(\mu\)s, which is the estimated time to form a new nucleus within the droplet (approximated by \(1/JV_{drop}\), where \(J\sim10^{11}\) cm\(^{-3}\)s\(^{-1}\) at \(~232\) K). At the lowest temperature of \(~227\) K and an estimated growth rate of \(~5 \times 10^5\) nm/s, the time for the ice nucleus to grow to a distinguishable size (\(~486\) \(\mu\)s) is slightly longer than the time to form a new ice nucleus (\(~405\) \(\mu\)s, with \(J\sim10^{13}\) cm\(^{-3}\)s\(^{-1}\) at \(~227\) K). At this temperature, however, complete crystallization of the droplet requires much longer times (\(~10^5\) \(\mu\)s) than to form another nucleus. Thus, we note that the crystallization times may represent a combination of nucleation and growth at the lowest temperature of \(~227\) K.
Nucleation rate sensitivity to increased pressure according to CNT.

Recently, a pressure-dependent CNT has been formulated to include the pressure dependence in the form of chemical potential differences that primarily alter the overall thermodynamic barrier to nucleation (ΔF^*). In this formulation, an increase in pressure decreases the nucleation rate (Fig. S1) due to higher ΔF^* at higher pressure (Fig. S2). For example, increasing the pressure from 0.1 MPa (black solid line in Fig. S1) to 50 MPa (gray solid line in Fig. S1), equivalent to reducing droplet diameter from a few micrometers to a few nanometers, decreases the nucleation rate significantly at temperatures above 200 K. This is because the pressure contribution to the thermodynamic energy barrier (ΔF_p^*) (assuming $\Delta \mu_{sl} = \Delta \mu_{slp}$, see Experimental Section) is significant at 50 MPa (gray solid line with plus symbol in Fig. S2) and contributes up to ~17% of ΔF^* (gray solid line in Fig. S2) at higher temperature, but the ΔF_p^* is negligible below 200 K. In contrast ΔF_p^* at 0.1 MPa (black solid line with plus symbol in Fig. S2) is negligible over the same temperature range. However, this analysis ignores the pressure effect on liquid diffusivity (D). The D may affect the nucleation rate significantly within the “no-man’s land” by altering the kinetic barrier to nucleation (Δf^*). When a CNT analysis is performed to include the effect of pressure on the D alone, a pressure increase of 50 MPa increases the nucleation rate at lower temperature (compare gray solid line versus gray dashed line in Fig. S1). This is due to a significant decrease in the Δf^* at lower temperature (compare black solid line against gray dashed line in Fig S3). In this illustration, we assumed that an extrapolation of the D_{VFT} fitted to D data above T_H^{13} describes the D within “no-man’s land”. Figure S4 shows that the D_{VFT} at 50 MPa (black solid line) decreases more rapidly than the D_{VFT} at 0.1 MPa (gray dashed line) with decreasing temperature. When the pressure dependence of both barriers are accounted for, the pressure increase lowers the nucleation rate at temperatures above 220 K, but increases the nucleation rate at temperatures below 220 K (compare black solid line to gray dashed line in Fig. S1). Thus, the pressure effect on both ΔF^* and Δf^* needs to be considered when comparing ice nucleation rate results from various experiments over a wide range of temperatures and pressures, particularly below 235 K.
Figure S1. The nucleation rate \((J) \) is sensitive to both temperature and pressure according to a pressure-dependent CNT analysis. Increasing pressure from 0.1 MPa (black solid line) to 50 MPa (gray solid line) decreases \(J \) at higher temperature when diffusivity (\(D \)) is assumed to be pressure independent. In contrast, a 50 MPa increase in pressure increases \(J \) at lower temperature assuming the pressure change only affects the \(D \) (see gray solid and dashed lines). Overall, the pressure increase from 0.1 MPa (black solid line) to 50 MPa (gray dashed line) causes \(J \) to decrease and increase for temperatures above and below 220 K, respectively.
Figure S2. The pressure contribution to the thermodynamic energy barrier (ΔF_p^*) between 160 K and 240 K. The ΔF_p^* at 0.1 MPa (black solid line with plus marker) is negligible. Likewise, the ΔF_p^* at 50 MPa (gray solid line with plus marker) is negligible below 200 K but it increases significantly with increasing temperature.
Figure S3. The kinetic barrier (Δf^*) over a wide temperature range. The Δf^* at 0.1 MPa (black solid line) increases much faster than at 50 MPa (gray dashed line) with decreasing temperature.
Figure S4. The diffusivity based on VFT fits to data of Prielmeier et al.13 extrapolated to the “no-man’s land” region. The diffusivity at 50 MPa (gray dashed line) is much larger than at 0.1 MPa (black solid line), particularly below T_H.
Tabulated experimental data and calculated ice nucleation rates.

Table S1. A summary of experimental data collected as microdroplets evaporatively cool and freeze in vacuum. The distance represents distance between the nozzle exit and the interaction region where X-rays hit the droplet. The droplet diameters and speeds were adjusted to best fit experimentally determined droplet parameters from optical droplet measurements, volumetric liquid flow rates of the droplets, and droplet generation frequency. The temperatures and their uncertainties are estimated from the Knudsen theory of evaporative cooling with a calibration made by comparing the liquid water wide-angle scattering signal in this experiment against larger droplets evaporating in vacuum and against synchrotron measurements of water in a cooling cell. The ice fraction \(f_{\text{ice}} \) represents the fraction of ice-containing shots at a particular distance with uncertainty that corresponds to the standard deviation of individual recordings collected at each distance and include variations in the hit rate and droplet trajectory jitter.

<table>
<thead>
<tr>
<th>Distance (mm)</th>
<th>Temperature (K)</th>
<th>(f_{\text{ice}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.35</td>
<td>252 (^{+2}_{-1})</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>21.41</td>
<td>237 (^{+2}_{-0.2})</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>30.60</td>
<td>232 (^{+2}_{-0.1})</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>40.40</td>
<td>229 (^{+2}_{-1})</td>
<td>0.181 ± 0.112</td>
</tr>
<tr>
<td>45.60</td>
<td>228 (^{+2}_{-1})</td>
<td>0.836 ± 0.046</td>
</tr>
<tr>
<td>50.62</td>
<td>227 (^{+2}_{-1})</td>
<td>0.971 ± 0.048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance (mm)</th>
<th>Temperature (K)</th>
<th>(f_{\text{ice}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.88</td>
<td>233 (^{+2}_{-1})</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>36.04</td>
<td>230 (^{+2}_{-1})</td>
<td>0.048 ± 0.006</td>
</tr>
<tr>
<td>46.09</td>
<td>228 (^{+2}_{-1})</td>
<td>0.183 ± 0.051</td>
</tr>
</tbody>
</table>
Table S2. A summary of ice nucleation rate \((J) \) estimated from the measured \(f_{\text{ice}} \). The nucleation rate uncertainty accounts for the standard deviation in \(f_{\text{ice}} \) and the uncertainty in the number of ice nuclei in each X-ray shot that shows Bragg reflections (see Experimental Section).

<table>
<thead>
<tr>
<th>Distance (mm)</th>
<th>Temperature (K)</th>
<th>(J) (cm(^{-3}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droplet diameter = 12.4 μm, Droplet velocity = 10.35 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.50</td>
<td>230 (+2) (-1)</td>
<td>(2.11 \times 10^{11} + 3.12 \times 10^{12} - 1.38 \times 10^{11})</td>
</tr>
<tr>
<td>43.00</td>
<td>228 (+2) (-1)</td>
<td>(3.22 \times 10^{12} + 4.60 \times 10^{13} - 7.90 \times 10^{11})</td>
</tr>
<tr>
<td>48.12</td>
<td>227 (+2) (-1)</td>
<td>(3.58 \times 10^{12} + 5.76 \times 10^{13} - 2.79 \times 10^{12})</td>
</tr>
<tr>
<td>Droplet diameter = 8.7 μm, Droplet velocity = 19.23 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.96</td>
<td>232 (+2) (-1)</td>
<td>(2.69 \times 10^{11} + 3.81 \times 10^{12} - 3.90 \times 10^{10})</td>
</tr>
<tr>
<td>41.07</td>
<td>229 (+2) (-1)</td>
<td>(8.45 \times 10^{11} + 1.22 \times 10^{13} - 3.71 \times 10^{11})</td>
</tr>
</tbody>
</table>
Thermophysical and transport properties of water.

Table S3. Thermophysical and transport properties of water.

<table>
<thead>
<tr>
<th>Water</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight (kg mol⁻¹)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>18.015×10^{-3}</td>
</tr>
</tbody>
</table>

Equilibrium vapor pressure (Pa)

- Liquid, $p_{e,l}$: \(\exp\left(\frac{54.842763 - 6763.22}{T} - 4.210 \ln(T) + 0.000367 T + \tanh\left(0.0415(T - 218.8)\right) \times \left(53.878 - 1331.22/T - 9.44523 \ln(T) + 0.000367 T + \tanh\left(0.0415(T - 218.8)\right) \right)\right) \times 15 \)
- Hexagonal ice h, $p_{e,ih}$: \(\exp\left(9.550426 - \frac{5723.265}{T} + 3.53068 \ln(T) - 0.00728332 T\right) \times 15 \)
- Cubic ice c, $p_{e,ic}$: $p_{e,ih} \exp\left(\frac{155}{RT}\right)$ \(\times 7, 15 \)

Liquid isothermal compressibility (Pa⁻¹)

- 0.1 MPa, $\kappa_{T,0.1\text{MPa}}$: \(\sim 10.0 \times 10^{-10} \), at \(T = 238 \text{ K} \) \(\times 16 \)
- 50 MPa, $\kappa_{T,50\text{MPa}}$: \(\sim 1.2 \times 10^{-10} \), at \(T = 200 \text{ K} \) \(\times 16 \)

Density (kg m⁻³)

- Liquid, ρ: \((0.08 \tanh\left(\frac{(T - 225)}{46.2}\right) + 0.7415(647.15 - T)/647.15^{0.33} + 0.32) \times 10^3 \) \(\times 10 \)
- Hexagonal ice h, ρ_h: \(-1.3103 \times 10^{-9} T^3 + 3.8109 \times 10^{-7} T^2 - 9.259 \times 10^{-5} T + 0.94040 \) \(\times 10^3 \) \(\times 15 \)
- Cubic ice c, ρ_c: ρ_h \(\times 7 \)

Interfacial free energy (J m⁻²)

- Vapor-liquid, σ_{vl}: \((111.63 - 0.131677 T)/1000 \) \(\times 17 \)

Liquid diffusivity (m² s⁻¹)

- 0.1 MPa, $D_{\text{VFT,0.1MPa}}$: \(4.14 \times 10^{-8} \exp(-347/(T-177)) \) \(\times 13 \)
- 50 MPa, $D_{\text{VFT,50MPa}}$: \(8.90 \times 10^{-8} \exp(-563/(T-143)) \) \(\times 13 \)

CNT fit to microdroplets data (red line in Fig. 2a and 2b)

Solid-liquid interfacial free energy (J m⁻²)

- $\sigma_{s}(T)$: \((20.8 \times (T/235.8)^{0.3})/1000 \) \(\times 7 \)

Liquid diffusivity (m² s⁻¹)

- $D(T)|_{\sigma_{sl}}$: \(1.67 \times 10^{-8} \exp(5.698332 \times 10^{-2} T^2 - 2.728998 \times 10^4 T + 3.271878 \times 10^3) \)
CNT for “fragile” liquid scenario (black dotted line in Fig. 2a and 2b)

Solid-liquid interfacial free energy (J m\(^{-2}\))
\[
\sigma_s(T) = \frac{(20.8 \times (T/235.8)^{0.67})}{1000}
\]

Liquid diffusivity (m\(^2\) s\(^{-1}\))
\[
D(T) = \frac{kT}{(6\pi\eta r)}
\]

where
\[
r = \frac{3M}{(4\pi\rho N_A)^{1/3}}
\]
\[
N_A = 6.022 \times 10^{23}
\]
\[
k = 1.3806 \times 10^{-23}
\]
\[
\eta = \eta_0 \exp(\eta_0 T_0/(T-T_0))
\]
\[
\eta_0 = 10^{12}
\]
\[
\eta_0 = 7
\]
\[
T_0 = T_g/(1+7/(\log(10)\log(17)))
\]
\[
T_g = 136
\]

CNT scenario with \(\Delta F_p^{*} = 0.1\text{MPa}\), \(D_{VFT,0.1\text{MPa}}\)

Solid-liquid interfacial free energy (J m\(^{-2}\))
\[
\sigma_s(T) = \frac{(20.8 \times (T/235.8)^{0.67})}{1000}
\]

Liquid diffusivity (m\(^2\) s\(^{-1}\))
\[
D(T) = D_{VFT,0.1\text{MPa}}
\]

CNT scenario with \(\Delta F_p^{*} = 50\text{MPa}\), \(D_{VFT,0.1\text{MPa}}\)

Solid-liquid interfacial free energy (J m\(^{-2}\))
\[
\sigma_s(T) = \frac{(20.8 \times (T/235.8)^{0.67})}{1000}
\]

Liquid diffusivity (m\(^2\) s\(^{-1}\))
\[
D(T) = D_{VFT,0.1\text{MPa}}
\]

CNT scenario with \(\Delta F_p^{*} = 50\text{MPa}\), \(D_{VFT,50\text{MPa}}\)

Solid-liquid interfacial free energy (J m\(^{-2}\))
\[
\sigma_s(T) = \frac{(20.8 \times (T/235.8)^{0.67})}{1000}
\]

Liquid diffusivity (m\(^2\) s\(^{-1}\))
\[
D(T) = D_{VFT,50\text{MPa}}
\]

*We follow Jenniskens and Blake\(^{18}\) to estimate the “fragile” liquid nucleation rate from CNT. However, here we used diffusivity in the CNT formulation.

** The diffusivity is estimated from viscosity using Stokes-Einstein relationship. We follow Jenniskens and Blake\(^{18}\) to describe the viscosity over a wide range of temperature using VFT law.
REFERENCES

