Sequence Analysis

Winter 2023/2024

Arne Dür

• Scope:

Sequence analysis is an interdisciplinary field involving

- discrete mathematics
- bioinformatics
- molecular biology

to analyze biological sequence data (or, more generally, arbitrary text strings).

• Aims:

The purpose of this course is to explain how

data structures and algorithms

from discrete mathematics and bioinformatics can be used

- to find similar sequences in databases,
- to construct a phylogeny from homologous sequences, or
- to visualize the differences between sequences from a geographic region.

• Example 1:

How to align sample from lab to revised Cambridge Reference Sequence?

	1	1	1	1	1	1	1	1	1	1	1	1	1
	6	6	6	6	6	6	6	6	6	6	6	6	6
	1	1	1	1	1	1	1	1	1	1	1	1	1
	8	8	8	8	8	8	8	9	9	9	9	9	9
	3	4	5	6	7	8	9	0	1	2	3	3	4
												1	
rCRS	Α	C	C	C	C	C	Т	C	C	C	C	_	Α
SWGDAM	Α	C	C	C	C	_	Т	C	C	C	C	C	Α
transcript	M	M	M	M	M	D	M	M	M	M	M	-	M
EMPOP	Α	C	C	C	C	Т	C	C	C	C	C	_	Α
transcript	M	M	M	M	M	R	R	M	M	M	M	_	M

• Example 2:

How to find the *most parsimonious tree* for given sequences?

S1 = AAAAAAA S2 = GAAAGAA S3 = AAGAAAA

S4 = AGAAAGA S5 = AGAAAAG S6 = AGAAAAA

S7 = GAAGAAA

• Example 3:

How to *visualize* sequences from a geographic region?

- Quasi-median network of 273 samples from Austria 2005
- Quasi-median network of 353 samples from Caucasus 2001

Contents:

- String Matching
 - * Finite automaton (Knuth-Morris-Pratt algorithm)
 - * Suffix tree (Ukkonen's algorithm)
- Sequence Alignment
 - * Global alignment, edit transcript, and edit distance
 - * Dynamic programming, distance table, and edit graph
 - * Similarity of strings
 - * Local alignment

Contents (continued):

- Strings and Evolutionary Trees
 - * The Perfect Phylogeny Problem
 - Compatibility and strong compatibility of characters
 - * The Maximum Parsimony Problem and Steiner trees
- Quasimedian Networks
 - * Quasimedian algebra
 - * Construction of quasimedian networks
 - * Visualization

Scheduled Time and Place:

- Lecture: VO2 Thursday 10:15-12:00, HSB 7 (starting on 5.10.)
 On-line registration necessary to get OLAT access!
- Proseminar: PS1 Thursday 12:15-13:00, HSB 7 (starting on 5.10.)
 On-line registration necessary to participate!

Materials:

Lecture notes, problem sheets for weekly exercises, and supplementary materials can be downloaded from OLAT.