Supplementary Information

Decomposing anharmonicity and mode-coupling from matrix effects in the IR spectra of matrix-isolated carbon dioxide and methane

Dennis F. Dinu^{1,2,3)}, Maren Podewitz¹⁾, Hinrich Grothe³⁾, Thomas Loerting²⁾, Klaus R. Liedl^{1),*}

1) Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria

2) Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria

3) Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria

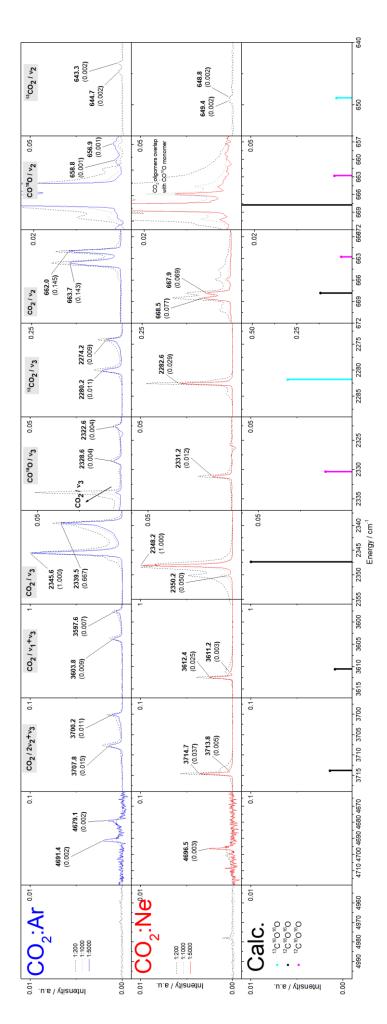
*e-mail: klaus.liedl@uibk.ac.at

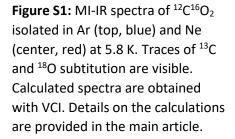
Samples used in our experiments

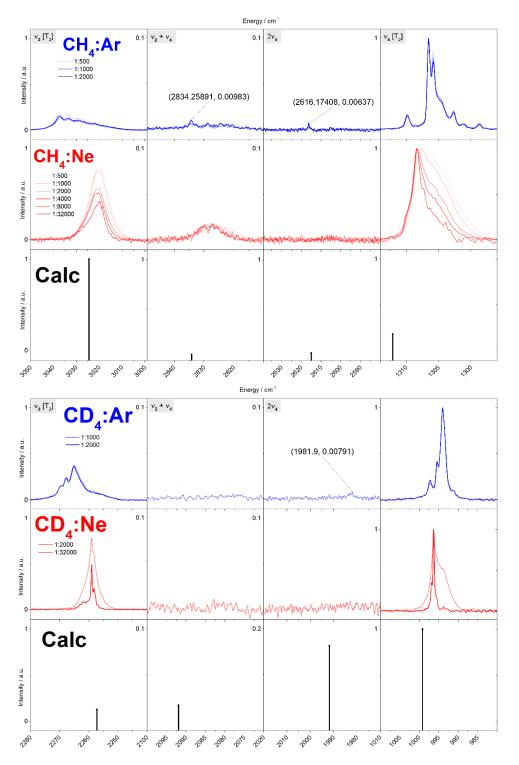
The used samples are ${}^{12}C^{16}O_2$ gas (99.9995%, Messer Austria, Order-Number=1290102114, Lot=27531923), ${}^{12}CH_4$ (99.995%, Methan 4.5 delivered by Messer Austria, Order-Number=108330011, Lot=140218) and ${}^{12}CD_4$ (99.99%, Methane D4 delivered by Euriso-top France, Order-Number=GE067L, Lot=29/032001, Cylinder-Number=8107).

Observed isotopoloques of carbon dioxide

For carbon dioxide, we observe traces of ¹³C and ¹⁸O, mainly as ¹³C¹⁶O₂ and ¹²C¹⁸O¹⁶O. After PES transformation, we computed the vibrational states and intensities of these two isotopoloques with VSCF/VCI, using the same settings mentioned in the paper. The results are shown together with the main isotopoloque ¹²C¹⁶O₂ in Table S1.


_	Transition (irrep)	active	Ar	Ne	Gas	VCI	НА
¹² C ¹⁶ O ₂ (D∞h)	$2\mathbf{v}_2 + \mathbf{v}_3$ $(A_{1u} + E_{2u} = \Sigma^+{}_u + \Delta_u)$	IR	3707.8 3700.2	3714.7		3713.8	
	$\mathbf{v_1 + v_3} \\ (A_{1u} = \Sigma^+{}_u)$	IR	3603.8 3597.6	3612.4		3610.6	
	\mathbf{V}_{3} (A _{1u} = Σ^{+}_{u})	IR	2345.6 2339.5	2348.2	2349.2	2347.4	2394.9
	2v ₂	RA				1388.1	
	$(A_{1g} + E_{2g} = \Sigma^{+}_{g} + \Delta_{g})$ $\mathbf{v_{1}}$ $(A_{1g} = \Sigma^{+}_{g})$	RA			1285.4	1284.6	1353.0
	$(E_{1u} = F_{u})$ (E _{1u} = F_{u})	IR	663.7 662.1	668.5 667.9	667.7	667.8	673.1
CO ¹⁸ O (D∞h)	v ₃ (A _{1u})	IR	2328.6 2322.6	2331.2		2330.4	2377.2
	2v ₂	RA				1366.1	
	v ₁ (A _{1g})	RA				1258.5	1314.0
	V ₂ (E _{1u})	IR	658.8 656.9	663.0?		662.8	667.9
¹³ CO ₂ (D∞h)	v3 (A1u)	IR	2280.2 2274.2	2282.6		2281.8	2327.3
	2v ₂	RA				1369.7	
	v1 (A1g)	RA				1265.4	1353.0
	v ₂ (E _{1u})	IR	644.7 644.3	649.4 648.8		648.9	653.1


Table S1: Directly observed vibrational transitions of the CO₂ monomer. VCI-5 / 4D CCSD(T)-F12/VTZ-F12, Gas-Reference: NIST Database


Detailed spectra

In the following, we present the spectra of carbon dioxide (Figure S1) and methane (Figure S2) in more detail, together with the computed transitions.

The computed spectra are plotted as vertical lines. The intensities are normalized to the strongest band. For carbon dioxide this is the v₃ fundamental. Considering the isotopoloques, the observed intensity ratios are approximately ${}^{13}CO_2/{}^{12}C^{16}O_2 = 0.03$ and ${}^{12}C^{18}O^{16}O/{}^{12}C^{16}O_2 = 0.01$. We weighted the computed spectra of the ${}^{13}CO_2$ and ${}^{12}C^{18}O^{16}O$ isotopoloques with these factors.

Figure S2: MI-IR spectra of ${}^{12}CH_4$ (top) and ${}^{12}CD_4$ (bottom) isolated in Ar (blue) and Ne (red) at 5.8 K. Calculated spectra are obtained with VCI. Details on the calculations are provided in the main article.