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Abstract

Cloud glaciation is critically important for the global radiation budget (albedo) and for
initiation of precipitation. But the freezing of pure water droplets requires cooling to
temperatures as low as 235 K. Freezing at higher temperatures requires the presence
of an ice nucleator, which is a foreign body in the water that functions as a template5

for arranging water molecules in an ice-like manner. It is often assumed that these ice
nucleators have to be insoluble particles. We put in perspective that also dissolved sin-
gle macromolecules can induce ice nucleation: they are several nanometers in size,
which is also the size range of the necessary critical cluster. As the critical cluster size
is temperature-dependent, we see a correlation between the size of such ice nucleat-10

ing macromolecules and the ice nucleation temperature. Such ice nucleating macro-
molecules have been already found in many different biological species and are as
manifold in their chemistry. Therefore, we additionally compare them to each other,
based on a composition of former, recent and yet unpublished studies. Combining
these data with calculations from Classical Nucleation Theory, we want to foster a15

more molecular view of ice nucleation among scientists.

1 Introduction

Although ice is thermodynamically favored over liquid water at temperatures below
273.15 K, the phase transition is kinetically hindered. Consequently, supercooled water
stays liquid, until ice nucleation takes place. Homogeneous ice nucleation (see Fig. 1a)20

is very unlikely, until temperatures as low as 235 K are reached. At higher tempera-
tures, catalytic surfaces which act as an ice-mimicking template are necessary. The
process, in which water molecules are stabilized in an ice-like arrangement by an im-
purity, is called heterogeneous ice nucleation (see Fig. 1b and c). An impurity that pos-
sesses this ability is called ice nucleator (IN), or sometimes as ice nucleus. The driving25

force that causes ice nucleation activity (INA) is the interaction between the partial
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charges on the H and O atoms in the water molecules and the properly arranged (par-
tial) charges on the surface of the IN. Therefore, the IN has to carry functional groups
at the proper position to be effective (Liou et al., 2000, Zachariassen and Kristiansen,
2000). In most cases it is not the whole surface of an IN that participates in ice nu-
cleation, but only certain sections, which are known as “active sites” (Edwards et al.,5

1962; Katz, 1962).
The larger the active site of an IN, and the more fitting functional groups it carries,

the more effective it stabilizes ice clusters, and so the higher the freezing temperature.
Consequently, single molecules of low-molecular compounds cannot nucleate ice. In
fact, soluble compounds consisting of very small molecules or ions, like salts, sug-10

ars or short-chained alcohols, cause a freezing point depression. However, if single
molecules are so large that they allocate enough active surface, they are INs by them-
selves. Such ice nucleating macromolecules (INMs) are especially common among
biological INs. Due to the same reason some low-molecular organic compounds which
show no INA in solution can act as IN, if they are crystallized in layers of a certain ar-15

rangement (Fukuta, 1966). More considerations about the ice nucleation process are
presented in Sects. S1.2, S1.3, and S1.4 in the Supplement.

INA has been discovered among a variety of organisms, including certain bacte-
ria, fungi, algae, plants and animals. Studies to characterize the active sites of some
of these organisms have revealed in almost all cases that they are biopolymers. The20

chemistry of these INMs is as diverse as the range of species they represent: Overall,
proteins, higher saccharides and lipids can play a role in INA (see Table 1). In the case
of bacteria, it is a certain class of proteins. The known bacterial INMs (BINMs) are fully
sequenced and characterized (e.g. Abe et al., 1989), while more questions remain un-
resolved concerning the other biological INMs. In some cases, biological INMs of one25

type or species show more than one freezing temperature in an ice nucleation spec-
trum. This can be explained by the presence of different functional groups, different
foldings or aggregation states, which also differ in their INA (e.g. Govindarajan and Lin-
dow, 1988a; Augustin et al., 2013; Dreischmeier et al., 2014; this study). The presence
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of INMs seems to have certain advantages, which might be the motivations for certain
species to produce them (see Sect. S1.5 in the Supplement).

The bacterial gene is highly conserved and codes for a 120 kDa β-helical membrane
protein with many repeated octapeptides (Green and Warren, 1985; Abe et al., 1989;
Kajava and Lindow, 1993; Schmid et al., 1997; Graether and Jia, 2001; Garnham et al.,5

2011). The INA induced by this protein also involves glycosides and lipids that stabilize
it in the outer membrane of the bacterial cell and assure its conformation for an optimum
functioning (Kozloff et al., 1984; Govindarajan and Lindow, 1988a; Turner et al., 1991;
Kawahara, 2002). With the side chains, the total mass of a single BINM is about 150–
180 kDa (see Table 1). It is assumed that the initiation point for ice formation is the10

amino acid sequence TXT in the repeated octapeptide, where T designates threonine
and X any other amino acid. The OH groups of the two threonine moieties match the
position of oxygen atoms in the ice lattice. Since a BINM contains several of these
sequences at positions and distances that correspond to the ice lattice structure it
can stabilize an ice embryo and so decrease the activation barrier for ice nucleation15

(Graether and Jia, 2001). As sequence modification studies on a structurally related
antifreeze protein have shown, the loss of the TXT has a devastating effect on the
interaction with water molecules, while other modifications have a much weaker impact
(Graether et al., 2000).

The existence of such BINMs has been reported for several species of γ-20

Proteobacteria, such as a wide range of strains in the Pseudomonas syringae species
complex (Lindow et al., 1982; Berge et al. 2014); Ps. fluorescens and borealis (Fall and
Schnell, 1985; Obata et al., 1987; Foreman et al., 2013); Erwinia uredovora (Obata et
al., 1990a); Pantoea agglomerans, formerly called E. herbicola (Phelps et al., 1986,);
Pant. ananatis (Coutinho and Venter, 2009); Xanthomonas campestris (Kim et al.,25

1987); a Pseudoxanthomonas sp. isolated from clouds (Joly et al., 2013); and more.
The efficacy of their INA depends on the strain, as well as on the cultural growth con-
ditions, e.g. the amount of accessible nutrients and the growth temperature (Rogers
et al., 1987; Nemecek-Marshall et al., 1993; Fall and Fall, 1998). In most cases, these
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BINMs are aggregated and anchored in the outer cell membrane, where the strength of
the INA depends on the aggregation state and the chemistry of the membrane (Govin-
darajan and Lindow, 1988a, b; Kozloff et al., 1991). However, BINMs that have been
isolated from the cell membrane show still appreciable INA, although less than in the
native state (Schmid et al., 1997). Since these complexes match the ice crystal lattice5

perfectly, these bacteria are the most active IN known at present.
These anchored aggregates of BINMs on the otherwise ice nucleation inactive cell

surface are a demonstrative example of active sites on a larger IN, i.e. the whole bac-
terial cell which is about 1 µm long. In some cases, bacteria release cell-free INs that
are carried on particles that are only a small fraction of the size of the cell. This is10

the result of the formation of membrane vesicles, spherical pieces of the outer cellular
membrane that are excised from the cell, a natural and common phenomenon in bac-
teria in general (Deatherage and Cookson, 2012). The expression of such vesicles with
BINMs has been reported for Pant. agglomerans (formerly E. herbicola) (Phelps et al.,
1986), E. uredovora (Kawahara et al., 1993), and Ps. fluorescens (Obata et al., 1993).15

For the production of BINM-carrying vesicles by Ps. syringae and viridiflava special cul-
ture conditions are necessary (Obata et al., 1990b; Pooley and Brown, 1990). For Ps.
putida, the INA found in culture supernatants was associated with a 164 kDa lipoglyco-
protein and had activity both as an IN and as an antifreeze protein. In contrast to the
BINMs from the species described above, removal of the approximately 92 kDa of car-20

bohydrates eliminated the INA. The antifreeze properties, however, were not affected
(Xu et al., 1998).

INMs were also found in the kingdom of fungi. Similarly to the bacteria, only a limited
fraction of investigated strains showed INA, while the majority was inactive (Pouleur et
al., 1992; Tsumuki et al., 1995; Iannone et al., 2011; Pummer et al., 2013a; Huffman25

et al., 2013; Fröhlich-Nowoisky et al., 2014). Species that showed appreciable INA in
laboratory studies include Fusarium sp. (Pouleur et al., 1992; Hasegawa et al., 1994;
Tsumuki and Konno, 1994; Tsumuki et al., 1995; Richard et al., 1996; Humphreys
et al., 2001), lichen mycobionts (Kieft, 1988; Kieft and Ahmadjian, 1989; Kieft and
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Ruscetti, 1990), rust fungi (Morris et al., 2013; Haga et al., 2013), Mortierella alpina
(Fröhlich-Nowoisky et al., 2014), Acremonium implicatum and Isaria farinosa (Huffman
et al., 2013). The characterization of the last two INMs is a part of this study. Fungal
INMs can be divided into two subgroups, both of which differ from the BINMs. The
INMs of rust fungi show properties of polysaccharide compounds (Morris et al., 2013),5

while the others are evidently proteins. The already characterized INMs from the lichen
Rhizoplaca chrysoleuca (Kieft and Ruscetti, 1990), from F. avenaceum (Pouleur et al.,
1992; Hasegawa et al., 1994; Tsumuki and Konno, 1994), and from M. alpina (Fröhlich-
Nowoisky et al., 2014) barely showed similarities with BINMs, apart from being pro-
teinaceous. For example, they are more tolerant to stresses, have a different amino10

acid sequence, seem to have less to no lipid and carbohydrate functionalizing, and are
extracellular, since they pass through filters with submicrometer pores. Only recently,
a 49 kDa protein from F. acuminatum was suggested as being the INM (Lagzian et al.,
2014). The study also suggests that posttranslational functionalization takes place in
the native state and improves the INA, which is a new finding in comparison to former15

studies (Kieft and Ruscetti, 1990; Tsumuki and Konno, 1994; Fröhlich-Nowoisky et al.,
2014).

INs were also found in extracellular fluids of multicellular organisms. The larvae
of Tipula trivittata (a crane fly) carry an INA-positive 800 kDa lipoprotein in their
hemolymph, which shares a high similarity with the BINMs (Duman et al., 1985, 1991;20

Neven et al., 1989; Warren and Wolber, 1991). The hemolymph of the queens of
Vespula maculata (a hornet) contains a 74 kDa hydrophilic INA protein (Duman et al.,
1984), and the hemolymph of Dendroides canadensis (fire-colored beetle) larvae con-
tains a cocktail of an INA protein, an INA lipoprotein and an antifreeze protein (Olsen
and Duman, 1997). Most of the known animal INs are proteinaceous, although there25

are some exceptions, such as the calcium phosphate spherules and fat cells in the
larvae of Eurosta solidaginis (a gall fly) (Mugnano et al. 1996). INs have also been
detected in other animal taxa, e.g. amphibians (Wolanczyk et al., 1990) and mollusks
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(Aunaas, 1982; Hayes and Loomis, 1985; Madison et al., 1991; Lundheim, 1997), as
well as in spider silk (Murase et al., 2001).

The fluid reservoirs of some succulent plants, namely Lobelia telekii and Opuntia
species, contain polysaccharide INMs (Krog et al., 1979; Goldstein and Nobel, 1991,
1994). Other non-proteinaceous INs have also been found in plants such as the ones5

reported from the wood of Prunus species (drupes) (Gross et al., 1988), or the lignin
in a waste water sample (Gao et al., 1999). Only few plant INs, like those of Secale
cereale (winter rye, Brush et al., 1994), have been clearly identified as proteins. The
pollen of some plant species showed appreciable INA in different lab studies, among
which that of silver birch (Betula pendula or alba) was the most active one (Diehl et10

al., 2001, 2002; von Blohn et al., 2005; Pummer et al., 2012; Augustin et al., 2013).
All pollen with INA that were further investigated produce easily extractable INMs, but
apart from that showed some differences from each other. As it was confirmed by
vibrational spectroscopy, the extracts of pollen contain saccharides, lipids, proteins,
and in some cases carotenoids, but no signature of sporopollenin, which is the sturdy15

hydrophobic polymer building up the outer pollen wall (Pummer et al., 2013b). Birch
pollen INMs have a size between 100 and 300 kDa, are tolerant to dry heat (up to
450 K), to high acid and guanidinium concentrations, as well as to several enzymes.
Overall, they show typical non-protein and non-lipid behavior (Pummer et al., 2012).

Fungi are abundant and diverse in the atmosphere (Fröhlich-Nowoisky et al., 2009,20

2012). Therefore, their potential for atmospheric ice nucleation has to be regarded.
In this study, the INMs that were recently found in A. implicatum and I. farinosa were
characterized and compared to other biological INMs, especially the recently charac-
terized INA proteins in M. alpina (Fröhlich-Nowoisky et al., 2014). We also expand our
knowledge about the chemistry of the birch pollen INMs (Pummer et al., 2012).25
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2 Methods

2.1 Characterization of new fungal INMs

The fungi A. implicatum and I. farinosa were cultivated on a plate of potato dextrose
agar (VWR™), incubated at ambient temperature for 1–2 weeks, until the first mycelium
was formed, and then left to grow at ~ 280 K for 2–3 months (A. implicatum) or 6–5

10 months (I. farinosa). The mycelium was scratched off with a scalpel or an inoculating
loop and put into a 15 mL Falcon tube. Then 10 mL high-purity water (18.2 MΩ cm)
was added, which was tapped from a water purification system (Thermoscientific™

Barnstead GenPure xCAD plus), autoclaved at 394 K for 20 min, and at last filtrated
through a sterile 0.1 µm PES filter (Corning™). The suspension was then shaken with10

a vortex device (VWR™ lab dancer) three times for 30 s and filtrated through a 5 µm
PES syringe filter (Acrodisc®), yielding a transparent solution. A small aliquot of the
5 µm filtrate was branched off for INA measurement as described later in this chapter,
while the rest was further filtrated through a 0.1 µm PES syringe filter (Acrodisc®). A
small aliquot of the 0.1 µm filtrate was saved for later INA tests. Further aliquots were15

exposed to different procedures, which are listed below, and then tested for their INA.
The change of INA provides information about the chemistry of the INMs. In all cases,
not only the filtrates but also pure water samples which were treated the same way
were tested as a negative reference.

– Filtration through size exclusion filtration tubes (Vivaspin® 500): 300 and 100 kDa20

cutoff. The passage through a filter indicates that the molecules are smaller than
the given cutoff.

– Exposure to heat for 1 h: 308 and 333 K, providing information about the thermal
stability.

– Addition of 6.0 M guanidinium chloride (Promega®), which is a chaotropic reagent25

used for protein denaturation.
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– Addition of 0.3 M boric acid (National Diagnostics®), which esterifies with saccha-
ride OH groups and so blocks the site.

– Digestion with enzymes (Applichem®) for at a given incubation temperature: Li-
pase for 1 h at 308 K for fat digestion, papain for 5 h at 296 K for protein diges-
tion. For the latter, two more temperatures were investigated (5 h at 308 K, 1 h at5

333 K), since its optimum temperature is about 338 K, but the investigated INMs
turned out to be rather thermolabile. Conveniently, papain still functions at far
lower than its optimum temperature, but with lower reaction rates. In our case, the
lowest investigated temperature was sufficient.

To determine the IN concentration per gram of mycelium, each sample was diluted with10

ultrapure water to its proper dilution (which was determined by trial and error) accord-
ing to Eq. (1). Then, 50 µL aliquots of the dilute were pipetted into 24–32 wells of a 96
well PCR tray (Axon™), which was then sealed with adhesive foil. The plate was then
inserted into an isolated PCR-plate thermal block, which was tempered by a cooling
bath (Julabo™ Presto A30). For recording a nucleation spectrum, the block was cooled15

to an initial temperature of 269.15 or 270.15 K. Then the block was further cooled in 0.5
to 2 K steps each 12 min. After each step, the number of frozen droplets was counted.
They can be discriminated from liquid droplets, since they reflect the incident light dif-
ferently, and so appear much darker. We calculated the IN concentration (number of
INs per grams of mycelium) via a variant of the Vali formula (see Eq. 1, Vali, 1971):20

nm

[
g−1

]
= −ln(1− fice) ·

Vwash

Vdrop
·
Fdil

mmyc
(1)

fice is the fraction of frozen droplets, Vwash the volume of water added for washing (10 mL
in this study), Vdrop the droplet volume in the freezing assay (0.05 mL in this study), Fdil
the dilution factor of the extract and mmyc the mass of the mycelium. For the formula
to work, a proper dilution, where 0 < fice < 1 is fulfilled, is necessary. In case of fice =0,25

the dilution is too high, and the formula gives nm =0 as a result. In case of fice =1, the
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sample is too concentrated, since nm becomes infinite. It is mentionable that the Vali
formula has a slight inaccuracy, since it assumes that a freezing droplet contains only
one IN. However, the distribution of INMs in the droplets follows Poisson statistics, so
even at low concentrations some droplets may contain two or more INMs (Augustin et
al., 2013).5

To quantify the efficacy of the new-found INMs of A. implicatum and I. farinosa in
comparison with others, we used the Soccer Ball Model (Niedermeier et al., 2011,
2014), which combines Classical Nucleation Theory with the assumption of a contact
angle distribution to calculate mean contact angles θ and standard deviations σ from
the 0.1 µm filtrate curves. Via a mass-to-size conversion table for proteins by Erick-10

son (2009), we estimated the diameter of our INMs to be about 4 nm, which was used
for the Soccer Ball Model parameterization. In comparison, we also calculated mean
θ and σ of M. alpina from comparable filtrates (Fröhlich-Nowoisky et al., 2014), and
added literature data for birch pollen INMs (Augustin et al., 2013) and BINM (Nieder-
meier et al., 2014). Although the concept of contact angles was originally developed for15

conventional ice nucleating particles, the application on INMs works perfectly. In fact,
one can assume that from the mechanism, there is no difference between INA of a free
INM and INA on a heterogeneous surface.

INA was also measured with two more systems. For both setups, 0.1 µm filtrates
that were prepared as described at the top of this chapter were properly diluted and20

applied. Resulting values for nm are compared to the nm derived from the conventional
freezing droplet array.

1. A freezing droplet array called “Bielefeld Ice Nucleation ARraY” (BINARY), which
consists of a 6×6 array of microliter droplets on a hydrophobic glass slide on top
of a Peltier cooling stage. A detailed description of the system, the preparation25

and the measurements is given in Budke and Koop (2014).

2. A vertical flow tube named “Leipzig Aerosol Cloud Interaction Simulator” (LACIS),
which is described in detail in Hartmann et al. (2011). Basically, droplets are gen-
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erated from the filtrate and dried. The residual particles are then size-selected,
humidified to form uniform droplets and inserted into the tube, where they are
cooled to the temperature of interest. The procedure was similar to that for the
birch pollen washing waters described in Augustin et al. (2013).

2.2 Characterization of birch pollen INMs5

To test the hypotheses that birch pollen INMs are polysaccharides and no proteins
(Pummer et al., 2012), further procedures were carried out to characterize the birch
pollen INMs. Therefore, birch pollen extracts were prepared by suspending and shaking
10 mg mL−1 pollen in ultrapure water for several hours, and then vacuum filtering the
suspension through a 0.1 µm PES filter (Corning™). The aqueous fraction was then10

exposed to different treatments, and nm was determined the same way as for the fungi,
with 24 or 32 droplets per sample, at 258 or 256 K. In all cases, reference samples
without addition of the reagents were measured and defined as 100 % INA. The results
are listed in Table 2.

First, an aliquot was spiked with 0.75 M boric acid, left overnight at room tempera-15

ture, which is known to esterify with sugars. In case that saccharides play a role, this
treatment should alter the INA of the birch pollen INMs. However, since the esterifica-
tion process does not necessarily affect all functional groups, the INA might be only
partially eliminated. On the other hand, the INA assay preparation has a certain sta-
tistical uncertainty, which makes minor changes in INA difficult to interpret. Therefore,20

we also investigated untreated birch pollen extracts as a reference. The same proce-
dure was repeated with heating aliquots with and without boric acid to 343 K for 2 h to
accelerate the esterification process.

To check if birch pollen INMs are indeed non-proteinaceous, three 100 µL aliquots
were prepared as described: (i) 94 µL water added, (ii) 94 µL medium added, (iii) 94 µL25

medium and trypsin added, and all of them incubated for 18 h at 310 K. Additionally,
100 µL water was treated like (iii). Trypsin is an enzyme that breaks down proteins, but
demands a certain medium. For each sample an INA assay as described in Sect. 2.1
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was run. To check, if the enzymatic treatment shifts the mass range of the birch pollen
INMs, they were separated with a size exclusion chromatography column. Details about
the sample preparation and separation are given in Sect. S2.2 in the Supplement.

2.3 INA of BINM peptides

A sample of the 16-amino acid peptide fragment which is the repetitive element in the5

Ps. syringae BINM was investigated for its INA. The peptide with the primary sequence
GSTQTAGEESSLTAGY was obtained from PSL (Heidelberg, Germany) and purified
chromatographically using a HiTrap Desalting column (GE Healthcare) with high-purity
water (18.2 MΩ cm) from a Milli-Q water purification system (Millipore). The yield of
pure peptide was determined using a NanoPhotometer (ε0 = 1490 M−1 cm−1).10

We measured peptide solutions with 10, 20, and 30 mg mL−1 via the oil immersion
cryo-microscopic method, which is described in detail in Pummer et al. (2012). There-
fore we prepared emulsions consisting of 45 % wt aqueous peptide solution and 55 %
wt oil (paraffin-lanolin). The frozen fractions of droplets with diameters of 20–50 µm
were documented with the software Minisee© as a function of temperature.15

3 Results/discussion

3.1 Characterization studies

The results of the chemical characterization of the fungal filtrates are composed in
Fig. 2. The quantitative passage through the 0.1 µm pore size filters, yielding optically
transparent, particle-free filtrates, demonstrates that those INMs are cell-free and stay20

in solution, when they are extracted with water.
The initial freezing temperature was 269 K for I. farinosa and 264 K for A. implicatum.

The calculated contact angles for I. farinosa and M. alpina are the highest, while the
one of A. implicatum lies in the range of the BINM one (see Table 1). The reduction
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of INA by papain and by guanidinium chloride indicates that the INMs of both species
are proteinaceous. Lipids seem to play a role in A. implicatum, but none in I. farinosa.
Both were resistant against boric acids, making a contribution of carbohydrates to the
INA unlikely. Both INMs are more heat sensitive than other fungal INMs, since they
were already destroyed at 333 K. A. implicatum has a mass of 100 to 300 kDa, since5

it quantitatively passes through the 300 kDa filter, but not through the 100 kDa filter.
About 95 % of I. farinosa INM were retained in the 300 kDa filter in comparison to the
0.1 µm filter, and the initial freezing temperature is shifted below 268 K. This suggests
that there are larger, more active states of I. farinosa INMs and smaller ones active at
lower temperatures.10

Figure 3 shows the comparison between the data from BINARY, LACIS, and the
droplet freezing array (see Sect. 2.1). In general, a good agreement can be seen be-
tween the data obtained with the different methods. However, it also becomes clear that
onset temperatures, which were often reported in the past, do not properly describe the
ice nucleation process. They are dependent e.g. on the detection limit of the different15

measurement methods used, and particularly for small IN concentrations, impurities or
droplets which randomly contain a much more than average amount of ice nucleating
material can influence these onset temperatures much. Hence, in the following, T50,
i.e. the temperature at which 50 % of all droplets froze, will be used. For that value,
however, also a note of caution should be given, as droplets with larger concentrations20

of similar IN will have higher freezing temperatures, due to an increased probability of
freezing.

The results of the birch pollen measurements, which are given in Table 2, suggest
that both the medium and the boric acid led to a reduction in INA. However, the addition
of trypsin had no additional effect at all, which speaks against a proteinaceous nature25

of those INMs. It is most likely that it is the formic acid that decreases the INA in the
medium, since it esterifies with hydroxyls similar to the boric acid. This is consistent
with the resistance against other proteases and guanidinium chloride (Pummer et al.,
2012), and the lack of the spectroscopic signature typical for proteins in the most active
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eluates. Overall, we confirm that the birch pollen INMs are no proteins, but most likely
polysaccharides.

After applying the SEC column, the INMs were spread across the whole eluate. This
might be explained by the glue-like behavior of the birch pollen extract (Pummer et al.,
2013b), which causes adhesion to the packing material and therefore undermines the5

separation principle of the column. Nevertheless, there was an unambiguous maximum
in the 335 to 860 kDa fraction before and after digestion. This is the more intriguing,
since we recorded the absorbance of the eluate at 280 nm via a UV detector, which
is a quite reliable way to detect most proteins. However, the detector showed no sig-
nal when the INA maximum was eluted. This alone would make it very unlikely that10

the birch pollen INMs are proteinaceous. The discrepancy with the mass range stated
by Pummer et al. (2012) could be explained by the slightly higher investigation tem-
peratures, which was a necessity of the setup, which corresponds to a larger critical
cluster or INM size. We suggest that the birch pollen INMs might be capable of form-
ing aggregates that are larger, active at higher temperatures, but also less frequent.15

Consequently, they are overseen in INA assay devices with lower material loads per
droplet, such as the oil immersion cryo-microscopy.

3.2 Critical cluster size

In the following, we will compare INMs, for which molecular mass and ice nucleation
temperature were determined experimentally, with the critical water molecule cluster20

size, which depends on the temperature. For the latter, we use the parameterization
by Zobrist et al. (2007), which is based on Classical Nucleation Theory. All available
data are put together in Table 3 and Fig. 4. Apart from the fungal and birch pollen INMs
investigated in our groups, we added BINM data by Govindarajan and Lindow (1988a),
who already indicated the good agreement between aggregate size and critical cluster25

size. INA data of polyvinyl alcohol (PVA) were incorporated, since it also showed a
slight INA in experiments (Ogawa et al., 2009). Its peculiarities are first that the formula
is quite simple for a macromolecule, which is a sequence of CH2CHOH-units, and
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second that the chain is rather randomly coiled. Therefore, the near-range molecular
order is quite well defined, while the far-range order is merely statistical.

The data of birch pollen and fungal INMs are in appreciable agreement with the
theoretical parameterization. From that we deduce that singular biological INMs which
carry a suitable hydration shell are the perfect ice templates, but with the advantage5

that they do not randomly dissociate like ice embryos in homogeneous ice nucleation.
This explains their high INA.

In the case of PVA, we see that an increase in size does not lead to an appropri-
ate increase in the freezing temperature. This can be easily explained by the different
degrees of structure of biological macromolecules and technical homopolymers. Both10

PVA and BINMs consist of a sequence of monomers covalently linked to each other,
like the wagons of a train. As the backbone shows some flexibility, longer chains will not
be bolt upright sticks, but fold into more compact three-dimensional structures. With-
out any further forces, polymers coil randomly, like a string of wool that tends to ravel.
Therefore, confined geometries do not exceed the size of a few monomers, where it15

is the limited flexibility of the monomer-to-monomer bond that causes confinement.
Hence, an increase in the total INM mass will not increase its INA. In contrast, intact
proteins have a strongly determined folding, which is held together by intramolecular
forces (e.g. hydrogen and disulfide bonds), and sometimes even forced on them by
folding-supporting proteins. Therefore, a native protein’s structure is stabilized in a cer-20

tain geometry, as is the molecular surface. The unfolding of a biological macromolecule
– a process called denaturation – changes also many of its properties. This is also valid
for the INA of INMs, and explains their deactivation by heat far below the temperatures
where the covalent molecular bonds are broken. It is also responsible for the destruc-
tion of most INMs by the chaotropic guanidinium chloride. Summed up, randomly coiled25

INMs like PVA allocate only small, one-dimensional templates for ice nucleation (see
Fig. 1b) and are therefore rather inefficient. Consequently, the ice nucleation temper-
atures are maximum a few Kelvin above the homogeneous freezing temperature (see
Fig. 4). On the other hand, molecules in confined geometries, like the BINM, allocate
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stable two-dimensional surfaces as ice nucleating templates (see Fig. 1c), which are
larger and therefore nucleate at higher temperatures (see Fig. 4). Also long-chained
alcohols show appreciable INA, if they are crystallized in well-defined monolayers, de-
pending on the chain length, the position of the OH group, and substitutions on the
side chains (Popovitz-Biro et al., 1994). Of course, the surface of these 2-D-templates5

has to be properly functionalized in order to arrange the water molecules, or else they
show no INA at all.

3.3 INA of BINM peptides

The examination shows that the 16-amino acid BINM peptide shows INA, when a cer-
tain concentration in solution is surpassed. In view of Fig. 4, this molecule should barely10

show INA, since its molecular mass is only 1.6 kDa and the number of fitting functional
groups is limited to one TXT motif. However, these peptides tend to self-assemble into
aggregates (Garnham et al. 2011), which consequently follow equilibrium of formation
and decay. These aggregates may have different sizes and forms (e.g. parallel versus
antiparallel β sheets), and consequently different INAs.15

If the fractions of frozen droplets are plotted against the temperature, it can be
seen that while the 10 mg mL−1 sample showed only homogeneous ice nucleation, the
30 mg mL−1 sample showed an initial freezing temperature of about 250 K, from which
a broad flat slope ranged down to the homogeneous ice nucleation range. The variance
of T50, which ranges from 240 to 245 K in different experiments, is rather high, since20

the aggregate formation seems to be very sensitive to the handling of the sample. This
is in contrast to the typical biological INMs, which show a very steep slope at a given
temperature and then reach a saturation plateau (see e.g. Figs. 2 and 3). Further in-
vestigations are in progress to measure the aggregates and get a better understanding
of the process.25
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4 Discussion and conclusions

4.1 Basic physics of INA

In atmospheric science, INs are traditionally regarded as insoluble particles on the
surface of which ice nucleation takes place. According to Raoult’s law, soluble sub-
stances are expected to decrease the freezing point with increasing molar concentra-5

tion. Furthermore, as already stated, the template has to be of a certain size to make
ice embryos that are large enough to grow. Consequently, particles that dissociate into
low-molecular compounds in solution (e.g. NaCl, mono- and disaccharides) cannot act
as IN. However, data by Pummer et al. (2012) showed that the ice nucleation active
components of pollen have a mass between 100 and 300 kDa. This means, the INs10

have the size of single macromolecules. If these molecules are fully dissolved in wa-
ter, one can regard them as being in solution and not in suspension. Many proteins
are soluble in water (e.g. Osborne, 1910; Macedo, 2005; see Sect. S1.1 in the Supple-
ment), but single molecules are far larger than e.g. salt ions or lower sugars. Therefore,
a deviation from the simplistic approach of Raoult’s law is expectable. In this case, a15

soluble compound can also be an IN, if the molecular surface is large enough to sta-
bilize ice embryos. The freezing point depression is expected to be rather weak for a
dissolved > 100 kDa molecule, because even a high mass concentration correlates with
only a low molar concentration. The resulting small reduction of the solution water ac-
tivity is likely to affect the heterogeneous ice nucleation temperature only slightly (see20

Sect. S1.4 in the Supplement, Koop and Zobrist, 2009; Attard et al., 2012). Accord-
ingly, certain macromolecules can act as IN in spite of being water-soluble, because
the water-structuring effect over-compensates the colligative freezing point depression.
Most molecules carry a well-defined hydration shell. In case of INMs, the geometry of
water molecules in the hydration shell is supposedly similar to the geometry in an ice25

embryo, what triggers the freezing process (see Fig. 1). We therefore emphasize that
a more molecular view on IN allows better understanding. We see the link between this
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molecular view and the macroscopic view that is necessary for atmospheric models in
the contact angles.

As shown in Fig. 4, molecular size and INA exhibit a positive correlation. Deviations
from the model line can be explained by different properties of different types of INMs.
If molecules are larger than expected, like the birch pollen INMs, the active site might5

not be the whole molecule, but just a small part of it. The INMs of I. farinosa and M.
alpina seem to be too small. This can be either explained by spontaneous aggregation
of several molecules after the filtration step, or by a large hydration shell around these
INMs that has to be added to the total IN mass. Also, when data were derived from
measurements in which droplets were examined which contain higher numbers of INM10

per droplet, the freezing temperature is shifted to higher temperatures, as can e.g. be
seen when comparing data of birch pollen from Pummer et al. (2012) and Augustin et
al. (2013). Very speculatively, one could try to go the other way and use experimentally
determined freezing temperatures of IN, e.g. mineral dust and soot, to roughly estimate
the size of their active sites. In combination with chemical and structural analyzing of15

the IN, one could try to identify which elements of these IN can be considered to be
responsible for the INA. Considerations about the INA and active sites of mineral dust
are given in Sect. S1.6 in the Supplement.

4.2 Atmospheric impacts

Apart from its cryobiological and evolutionary aspect, heterogeneous ice nucleation20

is of high importance for atmospheric research, since it causes cloud glaciation, and
therefore impacts the global radiation budget (albedo) and initiates precipitation.

It is a common argument against the atmospheric INA potential of bioaerosols that
whole cells that are at least some micrometers in size are far too large to reach altitudes
higher than a few kilometers. The detection of cultivable microorganisms even in the25

mesosphere (Imshenetsky et al., 1978) shows that there have to be mechanisms that
elevate intact cells to the higher atmosphere. As an example, the atmospheric turbu-
lences caused by volcanic activity support a high- and far-range distribution of all kinds
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of aerosols (van Eaton et al., 2013). Furthermore, certain pollen (e.g. pine) and fun-
gal spores (e.g. urediospores) are very buoyant, as they possess wing-like projections
and other aerodynamic surface properties. Urediospores have been collected from the
air at over 3 km above the ground level along with other microorganisms (Stakman
and Christensen, 1946). Cultivable microorganisms have also been collected from the5

stratosphere (Griffin, 2004). At last, microorganisms are frequently found in precipita-
tion samples (e.g. Amato et al., 2007), what indicates their presence at cloud formation
altitudes. Even more intriguingly, some of these organisms are even able to proliferate
in supercooled cloud droplets (e.g. Sattler et al., 2001).

Furthermore, biological cells are not rigid spheres, but rather a composition of many10

different membranes, organelles and fluids, which further consist of many different
molecules, ranging from water to small organic molecules and to biopolymers. There-
fore, the release of molecular matter, as well as cell fragmentation, is common. Several
studies detected molecular tracers from pollen grains and fungi in atmospheric fine par-
ticulate matter even in the absence of whole cells (e.g. Solomon et al., 1983; Yttri et al.,15

2007). In most cases, biological INMs are easily released from the producing cell (see
Table 1). Since a single primary biological particle can carry up to hundreds and thou-
sands of INMs, and since the INMs are also much lighter, we expect their atmospheric
concentration to be significantly higher as well. A possible mechanism of INM release
is cell rupture caused by a rapid change in moisture. Scanning electron microscopy20

studies on wet pollen back up this idea by visualizing the release of organelles and
organic matter (Grote et al., 2001, 2003; Pummer et al., 2013b). This explains why
rainfall, which is expected to wash out aerosols, can indeed increase the concentration
of allergens (Schäppi et al., 1999) or INs (Huffman et al., 2013) in the air.

Quantifying the atmospheric impact of fungi is even more difficult, as presumably 125

to 5 million fungal species exist (Hawksworth, 2001). Due to mutation and adaptation,
every species consists of numerous strains, which differ in their INA (Tsumuki et al.,
1995). Even if all studies are combined, it is only a minor fraction of all fungal species
that have been tested for their INA. Furthermore, the expression of INMs is triggered
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by yet unknown conditions, which could be the availability of nutrients, the local climate
or competition with other microorganisms. As a consequence, INA-positive strains can
lose their activity when they are cultivated under laboratory conditions (Tsumuki et al.,
1995; Pummer et al., 2013a). Therefore, more atmospheric IN counting and sampling
will be necessary to understand the contribution of biological INA better.5

The Supplement related to this article is available online at
doi:10.5194/acpd-14-24273-2014-supplement.
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Table 1. The chemical properties of some INMs. “T stability” shows the temperature about
which the IN are denatured. An interrogation mark indicates some uncertainty. See Introduction
for the sources of these data. θ [◦]±σ [◦] are the calculated contact angle distribution according
to the Soccer Ball Model.

Type Organism cell-free? protein? glycoside? lipid? T stability size (1 unit) θ [◦]±σ [◦]

BINMs: Ps. syringae no yes yes yes < 313 K 150–180 kDa 34.1±2.3
E. herbicola yes yes yes yes < 313 K 150–180 kDa

Fungal INMs: Rhiz. chrysoleuca yes yes no no > 333 K < 0.22 µm
F. avenaceum yes yes no no > 333 K < 0.22 µm
A. implicatum yes yes no? yes 308–333 K 100–300 kDa 33.2±2.3
I. farinosa yes yes no? no 308–333 K ∼300 kDa 24.6±0.6
M. alpina yes yes no? no 333–371 K 100–300 kDa 26.4±1.1
rust spores ?? ?? yes ?? ∼373 K ??

Animal IN: Tipula yes yes yes? yes ?? 800 kDa
Dendroides yes yes no? both ?? > 70 kDa
Vespula yes yes no ?? < 373 K 74 kDa
Eurosta* yes no no no ?? > 100 µm

Plant IN: Secale leaves ?? yes yes yes < 363 K ??
Prunus wood no no ?? ?? 313–323 K ??
Betula pollen yes no yes no 445–460 K 100–300 kDa 58.2±4.6
Lobelia fluid yes no yes? no > 373 K ??
Opuntia fluid yes no yes no ?? < 70 µm
Algae ?? ?? ?? ?? ?? ??

∗ Only the calcium phosphate spherules are regarded here, not the fat cells.
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Table 2. An overview over the investigation on birch pollen extracts. The percentage is the
relative number of INs in comparison to the untreated aliquot at a given temperature T [K].
Lines labeled with “(ref)” refer to reference measurements under the same conditions with pure
water instead of extract.

Treatment % INA T [K]

none 100 both
none (ref) < 9 both
boric acid 15 256
boric acid (ref) 0 256
343 K 29 256
343 K + boric acid 3 256
medium 34 258
medium + trypsin 30 258
medium + trypsin (ref) 13 258
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Table 3. Overview over masses (m) and activation temperatures (Tnuc) of certain IN.

Type Source m [kDa] Tnuc [K]

BINM (∼560 units) Burke and Lindow (1990) ∼83 700 272
BINM (∼130 units) Govindarajan and Lindow (1988a) ∼19 000 271
BINM (∼60 units) Govindarajan and Lindow (1988a) ∼8700 270
BINM (∼20 units) Govindarajan and Lindow (1988a) ∼2500 268
ice embryo Zachariassen and Kristiansen (2000) 810 268
Isa-INM (> 1 units) this study > 300 268
Isa-INM (1 unit?) this study 100–300 267
Mor -INM Fröhlich-Nowoisky et al. (2014) 100–300 266
BINM (3 units) Gurian-Sherman and Lindow (1995) ∼360 263
BINM (1 unit) Govindarajan and Lindow (1988a) ∼150 261
INAFP Xu et al. (1998) 164 261
Acr -INM this study 100–300 259
birch INM this study 335–860 257
birch INM Pummer et al. (2012) 100–300 255
birch INM* Augustin et al. (2013) 100–300 250
PVA Ogawa et al. (2009) 1.7–98 239
ice embryo Zachariassen and Kristiansen (2000) 1.26 233

∗ Tnuc here are T50 of both the LACIS measurement with 800 nm particles and the oil immersion
cryo-microscopy measurement with 5 µg mL−1 pollen.
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 (a)                            (b)                                                  (c) 

Figure 1. Visualization of water molecule ordering based on molecular model calculations (see
Sect. S2.1 in the Supplement): homogeneous ice nucleation (a); heterogeneous ice nucleation
by ordering of water molecules on a PVA strain, which is a 1-D-template (b), and an antifreeze
protein related to the BINMs, which is a 2-D-template (c). Each image contains water molecules
that are ordered (blue) and some randomly distributed water molecules (red).
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Figure 2. Concentrations of A. implicatum, I. farinosa, and M. alpina (B,C,D) INMs after several
treatments. “G.Cl” stands for guanidinium chloride treatment, “B.A.” for boric acid treatment. A
reduction in nm suggests that this method partly or fully destroyed the INMs. The data point
symbols o and x shall discriminate between different harvests. For M. alpina, the data are the
mean curves of all investigated strains of the phylogenetic subgroups B, C, and D (Fröhlich et
al., 2014). Subgroup A was ruled out due to its resistance against papain. The absence of a
curve in a diagram means that no droplets were frozen at all.
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Figure 3. Comparison of ice nucleation curves of 0.1 µm filtrates from a few M. alpina strains
measured with the droplet freezing assay at MPIC (M), LACIS (L), and BINARY (B).
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Figure 4. The dependence of the median freezing temperature on the size for different types of
IN (colored dots). The blue curve is the calculated critical ice cluster size derived from Classical
Nucleation Theory (Zobrist et al., 2007). The sources of the presented IN data are listed in
Table 3. The graph further shows the region where we assume the domains where 1-D- and 2-
D-templates act as IN. The acronyms Acr, Isa, and Mor stand for the respective fungal species.
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